

SONDERKOLLOQUIUM

AM 15. SEPTEMBER 2015 UM 16 UHR S.T.

IM HÖRSAAL II IM PHYSIKHOCHHAUS

ROLE OF INTERFACIAL INTERACTIONS IN SHAPING THE CRYSTAL GROWTH

JUNPROF. DR. MARIALORE SULPIZI

DEPARTMENT OF PHYSICS

JOHANNES GUTENBERG UNIVERSITY MAINZ

Liquid-solid interfaces are ubiquitous and responsible for a number of phenomena encountered in biological, chemical and physical processes. Surface-induced changes of material properties are not only important for the solid support but also for the liquid itself.

Among properties controlled by the specific interactions at solid/liquid interface is crystallization and shape selective crystal growth. This is fundamental for example to the synthesis of nanoparticles with specific tailored shape/size. In biomineralization the interaction between soft (proteins/solution) and hard matter (mineral), which occurs at the interface, is the key do develop unique structural properties.

Atomistic simulation can provide a powerful tool to understand interfacial phenomena. They can provide a microscopic interpretation of the experiments and identify which are the key interactions controlling a given phenomena allowing for a tailored intervention to shape and tune the material properties.

I will present a few examples from my research activity where we use atomistic simulations, also including electronic structure, in order to address the properties of solid/liquid interfaces.