

Fakultät für Mathematik und Physik Albert-Ludwigs-Universität Freiburg

PHYSIKALISCHES KOLLOQUIUM

АМ 23. JULI 2012 UM 17 UHR C.T.

IM GROBEN HÖRSAAL

C) Distribution of change in charge transport for pathogenic (orange) and all (cyan) mutations.

THE INTERPLAY OF MUTATIONS AND ELECTRONIC PROPERTIES IN DISEASE-RELATED GENES: A DOSE OF QUANTUM BIO-INFORMATICS

PROF. DR. RUDOLF A. RÖMER

DEPARTMENT OF PHYSICS AND CENTRE FOR SCIENTIFIC COMPUTING UNIVERSITY OF WARWICK, UK

Electronic properties of DNA are believed to play a crucial role in many phenomena in living organisms, for example the location of DNA lesions by base excision repair (BER) glycosylases and the regulation of tumor-suppressor genes such as p53 by detection of oxidative damage. However, the reproducible measurement and modelling of charge migration through DNA molecules at the nanometer scale remains a challenging and controversial subject even after more than a decade of intense efforts. Here we show [1], by analysing 162 disease-related genes from a variety of medical databases with a total of almost 20,000 observed pathogenic mutations, a significant difference in the electronic properties of the population of observed mutations compared to the set of all possible mutations. This correlation is novel, but not necessarily unexpected, as I will argue. As ours is inherently a statistical analysis, we have not been able to elucidate the causation behind the correlation. Even so, the knowledge that the change in electronic structure induced by mutations plays a role in fundamental biological and biochemical processes hints towards the possibility of electronic prediction, early diagnosis and detection of mutation hotspots.

[1] "The interplay of mutations and electronic properties in disease-related genes", C-T Shih, SA Wells, C-L Hsu, Y-Y Cheng & RA Römer, Scientific Reports 2, 272 (2012)