

Fakultät für Mathematik und Physik Albert-Ludwigs-Universität Freiburg

PHYSIKALISCHES KOLLOQUIUM

AM 18. DEZEMBER 2017 UM 17 UHR C.T.

IM GROßEN HÖRSAAL

MOLECULAR KINETICS AND MACHINE LEARNING

PROF. DR. FRANK NOÉ

HEAD OF COMPUTATIONAL MOLECULAR BIOLOGY GROUP FREIE UNIVERSITÄT BERLIN

Computing the molecular kinetics of biomolecular processes, such as protein folding or protein-protein association, is an extremely challenging problem as these dynamics are very high-dimensional and governed by rare event processes. I will show that the problem can be formulated as a variational problem where, similar as in quantum mechanics, the eigenfunctions of the underlying dynamical operator provide a subspace that contains the relevant rare-event processes. With such a dimension reduction technique - and a variety of other algorithmic tools such as Markov state models - we can reach beyond the seconds timescale with atomistic protein models and thus, for the first time, probe very rare event processes such as protein-protein dissociation in full spatiotem-poral detail. Finally, I will elude to new deep learning techniques that are able to estimate highly accurate and robust models of molecular kinetics.