

PHYSIKALISCHES KOLLOQUIUM

AM 26. OKTOBER 2015 UM 17 UHR C.T.

EMERGENCE AND DESTRUCTION OF MACROSCOPIC WAVE FUNCTIONS

PROF. DR. MARTIN HOLTHAUS

INSTITUT FÜR PHYSIK, UNIVERSITÄT OLDENBURG

The concept of the macroscopic wave function is a key for understanding macroscopic quantum phenomena. The existence of this object reflects a certain order, as is present in a Bose-Einstein condensate when a single-particle orbital is occupied by a macroscopic number of bosons. In this talk we will discuss the question how this concept can be extended to situations in which a condensate is acted on by an explicitly time-dependent force. While one might assume that such a force would necessarily degrade any pre-existing order, numerical model calculations indicate that macroscopic wave functions can persist even under strong forcing. Particular attention is paid to a construction of the macroscopic wave function, based on the system's actual N-particle wave function, which avoids the customary breaking if the U (1) symmetry associated with particle number conservation, and which relates the existence of time-dependent macroscopic wave functions to "stiffness" of the flow in Fock space. Our simulations also predict the possibility of an almost instantaneous dynamical destruction of a macroscopic wave function under currently accessible experimental conditions.